Menu

Eleveniszapos szennyvíztisztítási technológiák és szabályozás igényük fejlődése - 3. oldal

Csökkentett energia és szerves tápanyag igényű nitrogén eltávolítás

A fejlesztés lehetséges irányai a probléma megoldására a nitrogén eltávolításhoz szükséges oxigén és szerves tápanyag mennyiségének csökkentése. A jelenlegi ismeretek szerint ez kétféleképpen lehetséges. Egyik megoldás a korábban is hasznosított autotróf / heterotróf mikroorganizmusok oxidációjának és redukciójának szabályozása, a másik a tisztán autotróf mikroorganizmusokkal történő nitrogén-eltávolítás.

Nitrogén eltávolítás nitrit redukciójával

Az első esetben a nitrogén oxidációja csak nitritig történhet. Ekkor az oxidációhoz szükséges oxigén, valamint a nitrit redukciójához szükséges szerves karbon igény is kisebb, mint a nitráton keresztül történő redukciónál. Az utóbbihoz képest 25 % oxigén és 60 % KOI megtakarítás érhető el. 

Sajnos az így tisztított vizek a határértékeket valamelyest meghaladó koncentrációban tartalmaznak ammóniumot és oxidált nitrogént, amiért is egy lényegesen kisebb utótisztítási lépcső ilyenkor elengedhetetlen az előírásoknak megfelelő teljes nitrogén eltávolításhoz.  Ez a tisztítási megoldás azonban a klasszikushoz képest fokozott szabályozást igényel. A nitrogén eltávolításában döntő szerepet játszó első lépcsőben a pH-t 8,2 körüli értéken kell tartani, hogy a képződő nitrit ne oxidálódjon nitráttá. A nitrit redukciójára ugyanez a pH megfelelő. Az utótisztításnál ugyanakkor 7 – 7,3 közötti pH tartása szükséges a teljes nitrogén eltávolítás érdekében (Abeling U. and Seyfried C. F., 1993; Austerman-Haun U. és Seyfriec C. F., 1992).

Az ilyen megoldásokat ma még elsődlegesen a kis KOI/TKN aránnyal rendelkező, anaerob előtisztításról elfolyó ipari szennyvizek esetében preferálják. A nagy ammónium koncentráció miatt az energia- és szerves tápanyag megtakarítás esetükben jelentős, s azzal együtt biztosíthatja a befogadó határértékeket a tisztítás. Kommunális szennyvíztisztítók anaerob rothasztójából kikerülő iszapvíznél az alkalmazása alig terjedhet el, mivel az ilyen telepeken az iszapvizet a nyers szennyvízhez keverve annak ammónium koncentrációja nem növekszik olyan mértékben, ami a további tisztításnál a szükséges mértékű nitrifikációt / denitrifikációt a klasszikus úton (nitráton keresztül) megakadályozná. A kétlépcsős megoldás ezeknél a vizeknél lényegesen több beruházási, szabályozási, költséget igényelne, mint amennyi megtakarítás a levegőztetésnél jelentkezhet.

Nitrogén eltávolítás autotróf mikroorganizmusokkal történő nitrit redukcióval.

A másik ígéretes lehetőség a nitrogén gazdaságos és hatásos eltávolításra a fentiekben bemutatott kis KOI/TKN arányú és nagy ammónium tartalmú szennyvizeknél a nitrifikáció / denitrifikáció egyaránt autotróf mikroorganizmusokkal történő kivitelezése. Ez a megoldás mind az oxigén, mind a szerves tápanyag igény tekintetében a legkedvezőbb (Van de Graaf et al., 1995; Jetten et al., 1997; Hellinga et al., 1997). Az első lépcsőben csak az ammónium tartalom felét kell nitritté oxidálni, mivel a következő lépésben annak redukciója a többi ammónium elektron akceptorként történő hasznosításával történik.

Ez a megoldás azonban a korábban bemutatotthoz hasonlóan hagyományos befejező nitrifikációt / denitrifikációt igényel (Jetten et al., 1997). Az ebben az esetben is az igen kis mennyiségű, de határértéket meghaladó ammónium és oxidált nitrogén eltávolítására szükséges. Az utóbbi megoldás azonban jelenleg még csak nagylaboratóriumi méretekben került kiépítésre. Esetében a csak nitritig történő oxidációt nem a pH, hanem a nagyobb hőmérséklet Nitrobakter fajokra gyakorolt gátló hatása biztosítja.

Igen kényes szabályozási kérdés az első reaktorban a pH beállítása is. Ezt kommunális iszaprothasztók iszapvize esetében annak összetétele eleve biztosítja. Más szennyvizeknél további szabályozásigény is jelentkezik. Megfelelően nagy befolyó víz ammónium koncentráció esetén reaktor közvetlen átfolyású egységként is működtethető. Kisebb ammónium koncentrációnál bizonyára szükség lesz valamilyen rögzített filmes, elárasztott rendszer kiépítésére. Napjainkig csak a mezofil hőmérséklet tartományban vizsgálták az első lépcsőt, ahol a hőmérséklet biztosította a nitrit oxidáló Nitrobacter fajok kimosódását.

A második reaktor esetében ugyancsak fontos a megfelelő vízhőmérséklet. A biomassza szaporodása ennél a lépcsőnél még lassúbb, ezért laboratóriumban is csak a rögzített filmes, fluid-ágyas technika bizonyult megfelelőnek napjainkig. Különös jelentősége van ebben a lépcsőben a lebegő állapotú iszaprész visszatartásának is, ami speciális ülepítő zóna kialakításával oldható meg (Jetten et al., 1997; Hellinga et al., 1997).

Szabályozás igény

Mint a fentiekből látható, a kisebb szabályozás igényt a kommunális szennyvizek tisztítása igényli. Ezeknél napjainkban általánossá kezd válni a levegőztetés szabályozása. Ez azt jelenti, hogy megfelelő oxigén szondával mérik a medencében levő folyadék oldott oxigén- koncentrációját, és azt igyekeznek két határérték között tartani. Ezt a tartományt rendszerint 1,5 – 2,5 mg O2 / l koncentrációk közéállítják be. Az alsó érték a nitrifikálók megfelelő sebességgel történő szaporodásához elengedhetetlen. A felsőt értéket ugyanakkor az oxigénátadás hatékonyságának javítására, s ezzel az energiafogyasztás minimalizálására amennyire csak lehet, igyekeznek csökkenteni. Olyan szennyvizek esetében, ahol nitrifikációra nincs szükség, a medence oxigénszintjét jóval kisebb értéken lehet tartani (Kárpáti Á.. 1998b).

A szabályozás következő lehetőségét azt követően kellett csak az ilyen rendszerekben alkalmazni, amikor nyilvánvalóvá vált, hogy a denitrifikációhoz a szerves tápanyag egyre kevesebb a kommunális szennyvizekben, s a heterotróf mikroorganizmusoknak az autótrófok nitrifikációjával párhuzamos történő szerves tápanyag fogyasztása is számottevő KOI, vagy BOI veszteséget jelent a denitrifikáció tápanyag igényével szemben. Mind a térben, mind az időben ciklikus eleveniszapos rendszereknél jelentős lehet ezért az oxigénbevitel mindenkori ammónium koncentráció alapján történő szabályozása. Ha nincs ammónium a rendszerben, a bevitt oxigén kizárólag a szerves szén oxidációjára fordítódik, ami felesleges tápanyag pazarlás.

Az ammónium mérése azonban lényegesen bonyolultabb, mint az oldott oxigéné. A jelenleg gyártott ionszelektív elektródok csak megfelelő ionerősség beállításával tudják az ammónium koncentrációt kellő pontossággal mérni, amiért is a folyamatos monitoring csakis folyamatos vegyszeradagolással oldható meg. Ez azt jelenti, hogy a mérési technika a DO mérésénél összetettebb. Még bonyolultabb a monitoring kolorimertikus mérési elven történő kiépítése, hiszen annál a vegyszerek elkeveredése, a színkifejlet még több időt vesz igénybe, továbbá bonyolultabb berendezés kialakítást igényel. Mivel a fotometriás mérést a lebegő anyag zavarja, gondoskodni kell a minta mérés előtti szűréséről is. Az ilyen monitorok, illetőleg a velük kialakítható szabályozás költsége a DO szabályozás költségét jelentősen meghaladja Pulai J. és Kárpáti Á., 1998). Talán ennek is tulajdonítható, hogy hazánkban még eddig egyetlen helyen sem került kiépítésre ilyen szabályozó rendszer.

A nitrát eltávolítását illetően elsődleges igény a denitrifikációhoz szükséges szerves tápanyag jelenléte. Azokban a rendszerekben, ahol a szerves tápanyag ellátottság szűkös, az előbb említett ammónia koncentrációval történő levegőztetés szabályozás önmagában is nagy előrelépés. Javíthatja ilyen rendszereknél a nitrát eltávolítását, ha a levegőztető medencében levő nitrát koncentrációnak megfelelően lehetőség van a belső recirkuláció szabályozására. Ha kicsi az ammónia és nitrát tartalom célszerű a belső recirkuláció csökkentése. Ez is energia megtakarítást jelent a tisztításnál. A nagy nitrát tartalom ugyanakkor szükségessé teszi a belső recirkuláció növelését, hogy a denitrifikációs hatásfokot annak megfelelően javíthassák (Kárpáti Á., 1998b). A levegőztető medence nitrát koncentrációjának ellenőrzése az ammóniuméhoz hasonlóan ionszelektiv elektróddal, UV méréssel, vagy kolorimetriásan lehetséges (Pulai J. és Kárpáti Á., 1998). A költségigény ekkor is az ammónium mérési költségéhez hasonló nagyságrendben várható.

A foszfor, s azon belül is a biológiai többletfoszfor eltávolítását alapvetően a rendszer kiépítettsége, valamint a nyers szennyvízzel érkező acetát mennyisége határolja be. Ha az acetát a szennyvízben kevesebb a szükségesnél, a nagyobb anaerob reaktor hányad ugyan valamelyest segíthet, de adott határon túl a vegyszeres foszfor kicsapatás elkerülhetetlen. A szabályozás tekintetében ezért lehet hasznos a levegőztető medencében kiépített o-foszfát monitoring, amellyel a mindenkori vegyszeradagolást szabályozni lehet.

Mivel azonban a kommunális szennyvíztisztító rendszereknél az iszaprecirkuláció és a belső recirkuláció a nyers szennyvíz okozta terhelési csúcsokat elég jól elsimítja, a nitrát és foszfát koncentráció alapján történő szabályozás esetén kellő hatékonyságú a napi átlagminták foszfortartalma alapján történő belső recirkuláció és vegyszeradagolás a határérték biztonságos tartásához. Ugyanez igaz a pH szabályozás tekintetében is, amennyiben arra egyáltalán szükség van a viszonylag nagyobb befolyó víz ammónium koncentráció, vagy a helyi víz kis puffer-kapacitása miatt.

Az ammónium koncentrációval történő levegőztetés szabályozás mintegy 16 – 18 % levegőbevitel, levegőztetési költség megtakarítást jelenthet. Igen kérdéses, hogy az így megtakarítható üzemeltetési költség elfogadható időn belül megtérül-e egy kisebb üzem esetében. Nagyobb kapacitású tisztítók ( > 100 ezer LE) esetében az ilyen szabályozás mindenképpen javasolható.

Ipari szennyvizeknél, vagy élelmiszeripari szennyvizek anaerob tisztításáról elfolyó szennyvizeknél a nitrifikáció / denitrifikáció szabályozása mindenképpen szükséges. A rendszerben a nitrogén eltávolítása során keletkező savat feltétlenül semlegesíteni kell, mert különben a nitrit felhalmozódása igen súlyos üzemeltetési zavarokhoz vezethet. A korábban bemutatott nitriten keresztül történő nitrogén eltávolítás mindegyike a pH szűk tartományban történő szabályozását igényli (Abeling U és Seyfried C. F., 1992, 1993). Ezen túl az utótisztítási lépcsőben is mindkét esetben elengedhetetlen a pH szabályozása (Abeling U. és Seyfried C. F., 1993; Jetten et al., 1997).

Az utóbbi megoldásoknál felvetődik a hőmérséklet, és oxigénbevitel szabályozásának igénye is. Anaerob tisztítók elfolyó vizeinél, ahol meleg, a metanizáció miatt szabályozott  hőmérsékletű szennyvizek kezelése a feladat, nem biztos, hogy ki kell építeni külön hőmérséklet-szabályozást az utótisztítás első lépcsőjére.  Ugyanitt azonban a pH szabályozás ellenőrzése az ammónia oxidáció érdekében szükséges. A nitrit redukció külön pH szabályozást ezt követően nem igényel. A hőmérséklet szabályozására is csak akkor van szükség, ha nem a pH-val, hanem a hőmérséklettel akarják az ammónia oxidációját a nitritnél leállítani. Az ammónium oxidációjánál ugyanakkor fontos az oxigén, vagy levegőellátás szabályozása. Erre itt is egyrészt a reaktorban mérhető oldott oxigén, másrészt az ammónium koncentrációról történő, a kommunális szennyvizek takarékos levegőztetéséhez hasonló elvi megoldás a megfelelő. A mindenkori oxigén koncentrációt az ammónium alapjelének megfelelően kell beállítani. Az ammónium koncentrációját azonban ezeknél a rendszereknél sokkal nagyobb értéken kell tartani (5-15 mg NH4-N/l), mint a kommunális tisztítóknál, hiszen az egyensúlyban levő szabad ammónia feladata a nitrit oxidációjának visszaszorítása. 

Mint látható, a folyamatok bonyolódásával a rendszerek szabályozási igénye is növekszik. A műszaki fejlődés eredménye azonban a szabályozó műszerek árának, s ezzel a szabályozás költséghányadának a folyamatos csökkenése is. Ezzel szemben viszont az iszapkezelésé, elhelyezésé folyamatosan nő. A metanizációnál talán ezért is célszerűbb még akkor is nagyobb energia kihozatalt megcélozni, ha az utótisztításnál a szabályozás költsége a hagyományos rendszerekéhez képest növekszik.

Irodalomjegyzék

Abeling U. and Seyfried C. F. (1992) Anaerobic-aerobic treatment of high-strength ammonium wastewater – nitrogen removal via nitrite. Wat. Sci. Tech., 26 (5-6) 1007-107-15.

Abeling U. and Seyfried C. F. (1993)  Anaerobic-aerobic treatment of potato-starch wastewater. Wat. Sci. Tech., 28 (2) 165-176.

Austermann –Haun U and Seyfried C. F. (1992) Anaerobic-aerobic wastewater treatment plant of a potato chips factory. Wat. Sci. Tech., 26 (9-11) 2065-2068.

Balmelle B, Nguyen K. M., Capdeville B., Cornier J. C. and Degiun A. (1992) Study of factors controlling nitrite build-up in biological processes for water nitrification. Wat. Sci. Tech., 26 (5-6) 1017-1025.

Hellinga C.,van Loosdrecht M.C.M. and Heijen J.J. (1997) Model based design of a noval process for ammonia removal from concentrated flows. Proc. 2nd Mathmod, TU Vienna.

Henze M. (1991) Capabilities of biological nitrogen removal processes from wastewater. Wat. Sci. Tech., 23 (4-6) 669-679.

Jetten M. S. M., Horn S. J. and Loosdrecht M. C. M. (1997) Towards a more sustainable municipal wastewater treatment system. Wat. Sci. Tech., 35 (9) 171-180.

Kárpáti Á.(1998): Az eleveniszapos szennyvíztisztítás hatékonyságának szabályozása, ellenőrzése, optimalizálása. /MHT Veszprém Megyei Szervezete - MOKE – Magyar Szennyvíztecnikai Szövetség, Veszprém, MTESZ, 1998 május 18. Kiadványkötet, 60-67.

Kárpáti Á.(1998): On-line ellenőrzés és szabályozás a szennyvíztisztításban. 3rd Symposium on Analytical and Environmental Problems – Szeged 1998 márc. 30. Kiadványkötet, 138-144.

Kárpáti, Á., Monozlay, E.(1995): Az eleveniszapos szennyvíztisztítás fejlesztésének irányzatai I. BOI és nitrogéneltávolítás. 2. Veszprémi Környezetvédelmi konferencia, Veszprém, 1995 május 30  - június 1, Kiadványkötet 131-145.

Kárpáti, Á., Rókus, T.(1995): Az eleveniszapos szennyvíztisztítás fejlesztésének irányzatai II. A foszforeltávolítás és a szerves széntartalom kihasználásának optimalizálása. 2. Veszprémi Környezetvédelmi konferencia, Veszprém, 1995. május 30. - június 1, Kiadványkötet 146-158.

Pulai J. – Kárpáti Á.: Nitrogén és foszfor on-line mérése az eleveniszapos szennyvíz-tisztításban. The 3rd Symposium on Analytical and Environmental Problems – Szeged 1998 márc. 30. Kiadványkötet, 125-137.

Van de Graaf A.A., Mulder A., de Brujin P., Jetten M.S.M., Robertson L.A. and Kuenen J.G.(1995) Anaerobic ammonium oxidation in a biologically mediated process. Appl. Environ. Microbiol. 61, 1246-1251.

A teljes cikk letölthető az alábbi linken: Eleveniszapos szennyvíztisztítási technológiák és szabályozás igényük fejlődése

Kapcsolat Info

Ha a szolgáltatásainkkal kapcsolatban bármilyen kérdése merült fel, az alábbi címeken elérhet minket.

PureAqua Kft.

Székhely: 8200 Veszprém, 8200 Veszprém, Lőszergyári út 6.
Levelezési cím: 8200 Veszprém, Lőszergyári út 6.
Telefon:+36-88-794-243
Fax:+36-88-799-132
Skype:pureaqua01
Web:http://www.pureaqua.hu